
Automatic Load Balancing of Applications Using
Class Constrained Bin Packing Algorithm: A Review

 Akshay Karale¹, Shradha Katte²,Prashant Yadav,³ Chetan Godha4

 1,2,3,4Department of Computer Engineering,
P.E.S. Modern College Of Engineering ,Pune-05,

University Of Pune, Maharashtra ,India

Abstract :There are many applications that can benefit from
automatic load balancing property. For that application
instance is encapsulated inside the virtual machine(VM) and
model it as the Class Constraint Bin Packing (CCBP)
problem. Where each class represents an application and each
server as a bin. Here our aim is to consider CCBP algorithm
to achieve good demand satisfaction ratio and proper
utilization of the servers. It also helps to reduce the number of
servers and saves the energy. Here the proper security and
authentication is provided while uploading and downloading
application onto and from the server. Also the green
computing is considered to put unused server in standby
mode.

Keywords- Cloud computing, Virtual machine(VM),
Automatic load balancing, CCBP etc.

I. INTRODUCTION
Here we consider the virtual machine instance to carry

out different operations. While uploading the files onto
server user needs to decide the resources that are essential
for that application. So here we provide a system that can
carry out automatic load balancing of the application. The
user only needs to do is to upload that application onto a
server depending upon the demand of that application its
instances get created on several virtual machines. For
performing that operation we consider the effective load
balancing algorithm called as Class Constrained Bin
Packing (CCBP) algorithm.[1]
 The green computing is considered for putting the
unused bins into the standby mode. It also provides good
demand satisfaction ratio and considers the proper
utilization of the servers resources and as demand goes up
and down we create the application instances onto several
or fever servers.[1]
 We build a system which supports our auto load
balancing algorithm. We compare the overall performance
of our system with the traditional system with the help of
time line chart and graphs.

II. PROBLEM DEFINITION

For any kind of application we consider multiple
kind of demands of the resources such as memory ,
hardware , CPU and different components. So here we
consider mainly the CPU and memory for server resource
utilization [1,2].
 For those applications, memory is typically the
determining factor on how many applications a server can
run simultaneously, while CPU is the target resource we

need to allocate among the application instances. Here
depending upon the utilization of the CPU and the
corresponding memory resources of server , we consider
them as a prime factors for automatic load balancing of the
appplication onto a specific bin[1].
 The CPU capacity of server is the maximum number
of application instances which can run on server
simultaneously according to memory.Then the automatic
load balancing problem is similar to the Class Constrained
Bin Packing (CCBP) problem when we label each
application as a class and treat the CPU demands of all
classes as the items which need to be packed into bins. The
difference is that CCBP problem does not have the
“Minimize the placement change frequency” goal.
Therefore, in order to solve problem, we modified the
CCBP model to support the minimize the placement change
frequency goal and also considered for that of departure of
application from the specific bin.
[2]

III. LOAD BALANCING USING CCBP

In bin packing problem, a series of items of different
sizes need to be packed into a minimum number of bins.
The class constrained version of this problem divides the
items into classes or colors. Each bin has capacity V and
can accommodate items from at most C distinct classes. It
is Class Constrained because the class diversity of items
packed into the same bin is constrained. The goal is to pack
the items into a minimum number of bins.We can model
our resource allocation as the Class Constrained Bin
Packing (CCBP) problem where each server is a bin and
each class represents the specific application while
considering load. Items from a specific class represent the
resource demands of the corresponding application. The
class constraint reflects the practical limit on the number of
applications a server can run simultaneously[1].

For general applications memory is the basic resource
that is to be considerd.The capacity of a bin represents the
amount of resources available at a server for all its
applications.[2] The resource needs of applications can
vary with time. This is modeled as item arrivals and
departures,load increases correspond to arrivals of new
items, while load decreases correspond to departure of
already packed items.[1] Our algorithm handles the case
when all bins are used up. The size of an item represents an
amount of load for the corresponding application. By
making all items the same unit size, we can represent the
item size as a unit of load equal to a specific fraction of the

Akshay Karale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 855-857

www.ijcsit.com 855

server capacity. The capacity V of a bin thus represents
how many units of load a server can accommodate. The
number of items waiting to be packed from a specific class
represents the amount of resource needed by the
corresponding application.[1,2]

IV. ALGORITHM DETAILS

Our algorithm belongs to the family of the color set
algorithm , but with significant modification to adapt to our
problem. We label each class of items with a color and
organize them into color sets as they arrive in the input
sequence. The number of distinct colors in a color set is at
most C, the maximum number of distinct classes in a bin.
This ensures that items in a color set can always be packed
into the same bin without violating the class constraint. The
packing is still subject to the capacity constraint of the bin.
All color sets contain exactly C colors except the last one
which may contain fewer colors.[2]

Fig.1 Class Constrained Bin Packaging [1]

 A. Arrival Of The Application
 The arrival of items with the corresponding color models
the load increase of an application . To always pack the
item into the unfilled bin for that we consider the naive
algorithm. If the unfilled bin does not contain that color
already, then a new color is added into the bin. This concurs
to the start of a new application instance which is an
expensive operation. As a substitute, our algorithm attempts
to make room for the new item in a currently full bin by
shifting some of its items into the unfilled bin. Let be the
color of the new item and be any of the existing colors in
the unfilled bin. We search for a bin which contains items
of both colors. Then an item of color is moved from bin to
the unfilled bin,which makes room for an item in bin where
we pack the new item. If we are unable to find a bin which
contains both colors, we see if we can shift the items using
a third color as the intermediate.[1]

Fig.2 Arrival Of The New Item[1]

B. Departure Of The Application
 The departure of previously packed items models the
load decrease of an application. Here it is associated with a
specific color, not with a specific item. To choose which
item of that color is to be removed is given to the
algorithm. Here we have to maintain the property that each
color set has at most one unfilled bin.[1]

 Our departure algorithm works as the color set does
not have an unfilled bin, we can remove any item of that
color and the resulting bin becomes the unfilled bin.
Otherwise, if the unfilled bin contains the departing color, a
corresponding item there can be removed directly. In all
other cases, we need to remove an item from a currently
full bin and then fill the hole with an item moved in from
somewhere else.[1,2]

 Let be the departing color and be any of the colors in
the unfilled bin. We need to find a bin which contains items
of both colors. We remove the departing item from bin and
then move in an item of color from the unfilled bin. More
generally, we can find a chain of colors and fill the hole of
the departing item by shifting the existing items along the
chain.[1,2] we cannot find such a chain, we start a new
application instance to fill the hole remove an item of the
departing color from any bin which contains that color.
select bin move an item of color from the unfilled bin to
departing bin. If the unfilled bin becomes empty, we can
then remove it from the color set and shut down the
corresponding server since all application instances there
receive no load. It might look that a decrease in application
load can result in the start of a new application instance.[1]

Akshay Karale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 855-857

www.ijcsit.com 856

Fig.3 Departure Of The Existing Item [1]

C. Horizontal Scalability
 Horizontal scalability is the ability to connect multiple
hardware or software entities, such as servers, so that they
work as a single logical unit. It means adding more
individual units of resource doing the same job. In the case
of servers, you could increase the speed or availability of
the logical unit by adding more servers. Instead of one
server, one can have two to ten, or more of the same server
doing the same work. Horizontal scalability is also referred
to as scaling out.[3]

Fig.4 Horizontal Scalability[3]

D. Vertical Scalability
 Vertical scalability is the ability to increase the capacity
of existing hardware or the software by adding more
number resources. Adding processing power to a server to
make it faster. It can be achieved through the addition of
extra hardware such as hard drives, servers, CPU's etc.
Vertical scalability provides more shared resources for the
operating system and applications.[3]

Fig.5 Vertical Scalability[3]

IV. CONCLUSION
 We presented the design of a system that can scale up
and down the number of application instance. For that we
have a color set algorithm i.e CCBP algorithm to decide the
application placement and the load distribution. Our result
depend upon the size of the bin without violating the class
constraints. Results into automatic load balancing of the
applications.

REFERENCES
[1] Zhen Xiao, Senior Member, IEEE, Qi Chen, and Haipeng Luo as

The Automatic Scaling of internet applications for cloud computing
these SERVICES .YEAR-2014

[2] Sushil Deshmukh,Sweta Kale, Automatic Scaling Of web
applications for cloud computing services.year-2014

[3] M.Krishanth,L.Arockiam And G.Justy Mirobi Research Scholar ,
The Department Of computer science ,St. Joseph's college , Auto
Scaling of internet appications in a cloud comuting.year-2014

[4] Sasipriy,Ms.Kavitha,Department of computer science and
engineering Sri Eshwar College of engineering,coimbatore ,A
survey on Automatic Scaling of internet appications in a cloud
environment.year-2014

 [5] Oracle WebLogic Suite.
http://www.oracle.com/us/products/middle/in ware/cloud-app-
foundation/weblogic/overview/index.html Year- 2015

 [6] M. McNett, D. Gupta, A. Vahdat, and G. M. Voelker, “Usher: An
using extensible framework for managing clusters of virtual
machines,”in the Proc. Large Install. Syst. Admin. Conf.
(LISA’07).Year-2007

[7] J. Zhu, Z. Jiang, Z. Xiao, and X. Li, “Optimizing the performance
the virtual machine synchronization for fault tolerance,” IEEE
Trans.Volu Comput., vol. 60, no. 12, pp. 1718–1729.Year- 2011

[8] L. Epstein, C. Imreh, and A. Levin, “Class constrained bin of
packing revisited,” Theor. Comput. Sci., vol. 411, no. 34–36, pp.
3073–3089. Year-2010.

Akshay Karale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (2) , 2016, 855-857

www.ijcsit.com 857

